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A b s t r a c t  

Three-beam diffraction with a symmetric Bragg reflec- 
tion and a surface diffraction is studied based on the 
dynamical theory of X-ray diffraction. The difficulty 
involved in the boundary conditions for the surface 
diffraction is overcome by treating the Bragg-surface 
diffraction as either a Bragg-Laue or a Bragg-Bragg 
case with the inclination angle a between the crystal 
surface and the surface-diffracted beam being very 
small, about 10 -5 rad. The geometry of the dispersion 
surface, the number of permitted modes of wave 
propagation, the linear absorption coefficient, the 
excitation of the beam and the diffracted intensity 
are calculated for the Ge (000) (222) (31i) Bragg- 
surface diffraction of Cu Kay. It is found that the 
calculated relative integrated intensity ratio among 
the Bragg-surface 311 case and the Bragg-Bragg 113 
and 51T cases is in good agreement with the integrated 
intensity ratio obtained experimentally. 

I .  I n t r o d u c t i o n  

Multiple diffraction takes place when several sets of 
atomic planes are simultaneously in a position to 
diffract an incident X-ray beam. In terms of the 
reciprocal lattice, several reciprocal-lattice points are 
simultaneously on the surface of the Ewald sphere. 
In the case of a symmetric three-beam (O, G, L) 
diffraction (Fig. 1), there are three reciprocal-lattice 
points O, G and L involved, and the G reflection is 
a symmetric Bragg reflection (the primary reflection). 
O is the origin of the reciprocal lattice and also 
represents the direct incident beam. The vector 
Ot~(= g) and O-£(= 1) are the reciprocal-lattice vec- 
tors of the G and L reflections, respectively. 0G is 
the Bragg angle of the G reflection. Ko, Kc and KL 
are the wave vectors of the O, G and L diffractions. 
For the symmetric G reflection the crystal surface is 
parallel to the G atomic planes. The equatorial plane 
of the Ewald sphere bisecting the vector g represents 
the crystal surface in real space. If the reciprocal- 
lattice point L of the (secondary) L reflection lies 
above or below the equatorial plhne, then the L reflec- 
tion is of a Bragg or Laue type. The three-beam case 
of the former is called the Bragg-Bragg, the latter the 
Bragg-Laue diffraction. If the L point is in the 
equatorial plane, as shown in Fig. 1, then the diffrac- 

ted beam of the L reflection travels along the crystal 
surface. In this case, the three-beam case is called a 
Bragg-surface diffraction, because it involves a sym- 
metric Bragg reflection G and a surface reflection L. 

The intensities of both Bragg-Bragg and Bragg- 
Laue three-beam diffractions can be calculated based 
on the dynamical theory of X-ray diffraction without 
difficulties. As to the Bragg-surface case, it is, 
however, difficult to set up exact and useful boundary 
conditions for the surface-propagating waves. It is 
therefore the aim of this paper to solve this problem 
by using a small-angle approximation for the surface- 
diffracted waves, i.e. a small angle c~ is introduced 
between the surface-diffracted beam and the crystal 
surface. The surface-diffracted intensity is then calcu- 
lated as the asymptotic value for the a angle 
approaching zero. In addition, the number of modes 
of wave propagation is considered for this special 
surface reflection. The coordinates of the tie points 
on the dispersion surface, the absorption coefficients 
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Fig. 1. Geometry of a Bragg-surface three-beam diffraction: 
(a) overview; (b) top view. 
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and the excitation of modes are also given. Experi- 
mentally, the intensities of the three-beam Bragg- 
surface case of Ge (000) (222) (311) and the Bragg- 
Bra_gg cases, Ge (000) (222) (113) and Ge (000) (222) 
(511), for Cu Ka~ radiation are measured and com- 
pared with the calculated ones. It should be noted 
that the coplanar type of multiple diffraction has been 
reported by Graeff & Bonse (1977) and Pacherova & 
Bubakova (1987), where the dispersion equation can 
be solved analytically. In the present paper, we are 
dealing with a noncoplanar Bragg-surface diffrac- 
tion, where an analytical solution of the dispersion 
equation does not exist. 

2. Theoretical  considerations 

For a three-beam (O, G, L) diffraction, the funda- 
mental equation of wave fields for both o- and 7r 
polarizations takes the matrix form 

[43][D] = 0, (1) 

where  

[,~] = 

Xo - 2 e o  0 

0 Xo - 2 eo 
PoXG 0 

0 P~X c 
d2XL dlXL 

0 daxL 

Po.xc 0 d2xr. 0 
0 P~X~ d~x£ d3xc 

Xo - 2ec 0 d2X~-L 0 
0 Xo -2ec  d~Xc-L d3Xc-L 

d2XL_ G d~XL_ o XO--2eL 0 
0 d~XL_ G 0 Xo --2eL 

(2) 

and the column vector [D] is expressed horizontally 
as 

[ D ] = [ D , , o D = o D o . Q D = c D o . t .  D~.L]. (3) 

XG/47r is the electric susceptibility of the G reflection. 
x c = F F c = - ( r e A 2 / T r v ) F c ,  F c  being the structure 
factor, re the classical radius of the electron and v 
the volume of the crystal unit cell. The quantity 2e 
is defined as 

2 e s  =(K2-k2)/k2 (4) 

for H = O, G and L. KH is the wave vector of the H 
reflection inside the crystal and k is the magnitude 
of the wave vector in vacuum: Ko = CO, Kc = CO 
and KL = CL (see Figs. 1 and 2). They are related to 
the wave vectors ko, kc  and kL in vacuum by 

K s  = kH - k3fi (5) 

where  k3 is the accommodation and fi the unit vector 
of the surface inward normal. In terms of the dynami- 
cal theory, point C in Fig. 2 is the tie point on the 
dispersion surface, which defines the wave vectors 
Ks.  k s ,  depending on the entrance point, are func- 
tions of A0 and ~, A0 being the angular deviation 
from the Bragg angle 0c and ~ the exact three-beam 
position of the azimuth angle around g. For simplicity, 
we adopt the geometrical expressions for k s  and Ks  
from Chang (1984). Since the derivation of these 

expressions is purely geometrical and straightfor- 
ward, we will not present here the explicit forms of 
Ks. For later discussion, we choose the origin (zero 
point) of the coordinates of tie points on the disper- 
sion surface at the Laue point, i.e. ko = k c  = k t  = l/A, 
A0 = 0, ~0 = 0 and the y axis is along the fi direction. 

The o-- and zr-polarized components of the wave 
fields, D~ and D , ,  are defined according to the d- 
and ~ unit vectors shown in Fig. 2. Accordingly, the 
polarization factors P and d can be expressed in 
terms of the scalar products of these polarization unit 
vectors, 

p o .  A . A 
0 "  0 O" 0 = ] 

d, =~tO" @L 

d2 = ~ o "  O'L 
^ ^ 

d3 = ~ o  " ~ a  

d '3 = "~ c " ~ L 

P= = "no" ~ o  = cos 20~ 

= - s in  O sin 06 
A A 

= 0 "  G • O ' L  = C O S  1/i 

= cos Oc d'l = ~ c "  d ' t  = sin ~b sin Oc 

= cos Oo 

~'o" '~o = ~'o" "~L = "~o" ~rc = ~'o" ~z. = 6 0 "  '~o = O, 

where ~ is the angle between O L  and the C O G  plane. 

( a ) N u m b e r  o f  permi t ted  modes  o f  wave propagation 

Equation (1) can be solved as an eigenvalue 
equation. For a general N-beam diffraction there are 
2 N  eigenvalues corresponding to 2 N  modes of wave 
propagation. If the crystal is thick, for example/xt  > 
10, where/ . ,  is the linear absorption coefficient and 
t is the crystal thickness, and no grazing incidence 
or surface reflection is involved, the number N p  of 
permitted modes is 

N e = 2 ( N - N B )  (6) 

where  Nn is the number of Bragg reflected beams 
(Pinsker, 1977; Chang, 1979). 

Equation (6) is certainly not valid for cases involv- 
ing surface reflections. However, the surface case can 
be treated as an extreme case of either Bragg-Laue 

L 

0" \ 

C 0 

Fig. 2. Definition of the polarization unit vectors. All "~ are parallel 
to the OCG plane and the 6 satisfy ~M X $rM = KM (KM = C--M) 
forM=O, Gand L. 
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or Bragg-Bragg diffraction with the angle a, between 
the surface diffracted beam and the crystal surface, 
approaching zero. Figs. 3(a) and (b) show schemati- 
cally the diffraction geometry of Bragg-Bragg (a > 0) 
and Bragg-Laue (a <0)  cases. It should be noted 
that in Fig. 3(b) the surface-transmitted beam, rep- 
resented by the wave vector Kt., is accompanied by 
a grazing (specular) reflected beam k~. In the follow- 
ing, we shall follow the procedure of Chang (1979) 
to determine the number of permitted modes involved 
in these particular three-beam diffractions. 

Equation (5) for a given mode j of wave propaga- 
tion may be rewritten as 

Koj = kod - kSjfi, (7) 

where K, k and 8j are complex and k = 1/A. Accord- 
ingly, 2eGj can be written as 

2eoj = [(koj - kSjfi) 2 -  k21/k, (8) 

which leads to 

2eGj = - 2  y~jSj + 0(8~) (9) 

for ordinary G reflection, where the second-order 
term O(82) << 27c8j and 

2e , j  = - 2 6 8 j  + 82 (10) 

for a grazing surface reflection L, where 2aSj = [82 . 
Yc is the direction cosine of the kc with respect to A 
fi, i.e. y ~ = k c ' f i .  

To satisfy the requirement of conservation of total 
energy, the imaginary part 8 i of 8 must be non- 
negative for a permitted mode. According to Chang 
(1979), the number of permitted modes of propaga- 
tion is the number of positive 8i, which can be deter- 
mined based on Descartes's rule of signs. Since the 
electric susceptibility of the incident reflection is 
always greater than the diffracted ones, i.e. X~o > X~H 
for H = G and L (the superscript r indicates the real 
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Fig. 3. Schematic representation of (a) Bragg-Bragg (a > 0) and 
(b) Bragg-Laue (a <0) diffractions. 

part) and the sign of 8 i is the same as the sign of 8 r 
at the exact N-beam diffraction position, the signs of 
8 r are independent of the off-diagonal elements of 
the square matrix [ ~ ]  of (2). Therefore, the deter- 
minant of [c~] takes the form 

N O 

[qO]= rI (Xo+2y~8)2(Xo+268-82)2=O (11) 
j = l  

for an N-beam diffraction in which there are No 
ordinary reflections and one surface-reflected reflec- 
tion. Obviously, the solutions of the quadratic 
equation related to surface diffraction are 

6 = - a  + (X2o + a ) '/2 (12) 

where only one root satisfies the conservation of 
energy, no matter what the sign of a. This fact indi- 
cates that the three-beam Bragg-surface case studied 
can be treated as either a Bragg-Bragg or a Bragg- 
Laue case and the number of permitted modes in 
both cases is four [i.e. 2 ( N -  N B ) + 2 = 4 ] .  

( b ) Boundary conditions of wave-field amplitudes 

By considering the number of permitted modes and 
the eigenvalue equation (1), the coordinates of the 
tie point on the dispersion surface can be determined 
from the real part 8 r of the eigenvalue, while the 
linear absorption coefficient is related to the 
imaginary part 6i. The eigenvectors provide the ratios 
of the wave-field amplitudes involved. The absolute 
wave-field amplitudes can be determined by the 
boundary conditions, i.e. the continuities of the 
normal components of the electric displacements 
and the tangential components of the magnetic fields 
at the crystal boundary, respectively (Afanas'ev 
& Melkonyan, 1983), are 

4 4 

Z D,~o(j)= E~o Y. D=o(j)= E,~o 
j = l  j = l  

4 4 

Z D,~ ( j )  = E~o ~ D ~ o ( j ) =  E=~ (13) 
j = l  j = l  

4 4 

Z D¢r( j )= E~L ~ D=t.(j)= E s z r L  
j = l  j = l  

and 

4 

E uL(j )Do.L( j )=-  a ESL 

j=l (14) 
4 

Z ut.(J)D~t.(J)=-lo~lESt. 
j = l  

for the Bragg-Laue (a <0)  geometry. E~n and E,H 
are the cr and 7r components of the electric field of 
the H-reflected wave in vacuum (H = O, G or L), 
while EsL and EsL are those of the surface-reflected 
wave. The parameter u is defined as uL = KLz/k, KLz 
being the component of KL normal to the crystal 
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surface. For the Bragg-Bragg geometry (t~ > 0), the 
boundary conditions remain the same as (13) and 
(14), except that ES~ and s E~r  are replaced by E~L 
and E ~ .  

Since the or- and 7r-polarized wave fields are corre- 
lated with each other in three-beam diffraction, i.e. 
&o is not necessarily perpendicular to ~L, the excita- 
tions of E~L by both E~,o and E~o may not be null 
(Chang, 1984); E~L(tr) # 0 and E~L(~r) # 0. To 
include this correlated excitation, each equation in 
the boundary conditions should be decomposed into 
two parts to relate to the contributions from the 
excitations by E~o and E,~o. The boundary conditions 
of (13) and (14) can then be written as 

4 4 

~, C~o(j)X~,(j)= E~o ~, C~o(j)X~(j)=O 
j = l  j = l  

4 

~, C~G(j)X~,(j)= E~G(tr) 
j = l  

4 

E C~,G(j)X=(j)= E,~o('n') 
j = l  

4 

E 
j = l  

C~,L(j)X~(j)= ESL(tr) 

4 

Y. C,~L(j)X.(j) = ESL('rr) 
j----1 

4 

~, uL(j)C~,L(j)X~,(j)=-IaIESL(tr) 
j = l  

4 

E UL(j)Co, L(j)X=(j)=-- alE~L(~r) (15) 
j = l  

for the or components. Similarly, there are eight 
equations of the same form as (15) for the 7r com- 
ponents. The quantities C,m(j) and C=n(j) are the 
amplitude ratios defined as 

C,m(j) = D~n(j)/ X~(j) 
(16) 

C~n (j)  = D~n(j)/X,~(j), 

where X~.~ are the proportional constants, which can 
be found from (15). Hence the Dn are determined 
via (16). The intensity of the G reflection is therefore 
given by 

Ic -- [ I E ~ o ( ~ )  + E~o(~r)l  2 +lE~o('r)E~(~)12]/lEol 2, 
(17) 

where 

IEol= = IE~ol ~ + IE~ol ~. (18) 

The excitation of mode, Ex(j) ,  and the excitation of 
beam, Ex(H) ,  can be calculated as 

E x ( j ) =  E [ID~H(j)I2+ID~.( j ) I2]/IEol  2 (19) 
H = O , G , L  

4 

Ex(H)  = E [ D,m(j) 2+ D~n(j) 2] 
j = l  

x(s in  OH)/(IEo 2 sin 0o), (20) 

where sin 0u/s in  0G is the ratio of the direction 
cosines of the H and O defracted beams. Clearly, 
Ex(H)  is simply the H component of the Poynting 
vector. The linear absorption coefficient of mode j is 
defined as 

/x(j) = 47rkSj. (21) 

All the terms mentioned in (13)-(21) are the 
expressions for a given A0 and ~. 

3. Numerical calculations 

Dynamical calculations following the above theoreti- 
cal considerations are carried out for the three-beam 
Bragg-surface diffraction, i.e. Ge (000) (222) (31i) 
for Cu Kay, where 222 is a symmetric Bragg reflection 
and 31T is a surface diffraction. To solve the nonlinear 
equation of (2), the REDUCE program (Hearn, 1987) 
was used to calculate the complex roots 8 r. The atomic 
scattering factors, temperature factors and anomalous 
scattering corrections used were obtained from Inter- 
national Tables for X-ray Crystallography (1974). 

( a ) Dispersion surface 

Fig. 4 shows the dispersion sheets at AO = 0 for 
different inclination angles +a .  The abscissa is the 
azimuthal angle q~ deviated from the exact three-beam 
position q~ = 0 and the ordinate represents the y coor- 
dinate of the tie point C along the -f i  direction. The 
Laue point is at y = 0 and q~ = 0, AO = 0. There are 
four curves corresponding to the four modes of propa- 
gation. The dispersion curves of modes 1 and 2 are 
almost identical. They are related to the terms involv- 
ing the surface inclination angle a in (12). Those of 
modes 3 and 4 are attributed to the first term on the 
right-hand side of (11), which depends on the direc- 
tion cosine 3'0 of the direct beam. The drastic change 
of the dispersion curves of modes 3 and 4 occurs 
when the three-beam interaction comes into play at 

=24". As can be seen in Fig. 4, the separation 
between modes 1 and 3 is related to the a angle. The 
dispersion curves of mode 1 are lower for a = 
- - 1 0  3 ixrad and higher for a = 1 0  3 ixrad than those of 
mode 3. The relative positions of the dispersion curves 
of modes 1, 2, 3 and 4 remain unchanged as a 
approaches zero. Thus, Figs. 4(e) and ( f )  show that 
the dispersion surfaces for a = ±10 i~rad are practi- 
cally identical. Based on this fact, we could safely 
treat the dispersion surface at [a[ = 10 i~rad as that 
for the three-beam Bragg-surface diffraction. 

The dispersion surfaces with lal = 10 i~rad at A0 = 
0, 38.3 and 76.6 ixrad are calculated to demonstrate 
the effect of the total reflection on the position of the 
dispersion curves. The cuts at A0 = 0 and 76.6 lxrad 
are the two sections before and after the total reflec- 
tion, while the section at A0 = 38.3 lxrad goes through 
the Lorentz point, the center of the total reflection 
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range. Fig. 5 clearly shows that the three-beam inter- 
action points appearing in curves 3 and 4 are shifted 
from 24 p~rad for AO = 0 to 52 i~rad for AO = 38.3 ixrad 
and to 80 ~rad for AO = 76.6 lxrad. It is interesting to 
note that the dispersion curve of mode 4 at the Lorentz 
point is a straight line. This implies that mode 4 is 
not sensitive to the three-beam interaction so that it 
maintains its two-beam character at the Lorentz point. 

( b ) Absorption and excitation 

Fig. 6 presents the linear absorption coefficients/x 
for a = +10 i~rad. Again, this demonstrates that, with 

= 10 ~rad, both the Bragg-Laue and Bragg-Bragg 
cases behave as if they were Bragg-surface diffrac- 
tions. As clearly shown in Fig. 6, the abnormally large 
absorption of modes 1 and 2 is due to the large 
imaginary part of (X~+ O~) 1/2 in (12), 

1 i (~ --~ O~ -t- ( - -~  X o / X ~ )  1/2 d- i X~9 1/2). (22) 

It is understandable that the modes physically associ- 

ated with a shallow diffracted beam suffer more 
absorption than those with the ordinary diffracted 
beam. However, these two modes (1 and 2) are 
actually not excited at all in the diffraction process 
as can be seen in the excitations of the 000, 222 and 
311 beams shown in Figs. 7, 8 and 9, respectively. 
The excitations of modes 3 and 4 are similar. Strong 
excitation takes place at the three-beam point. The 
excitation of mode 4 is stronger than that of mode 3 
since the dispersion curve of mode 4 is relatively 
closer to the Laue point than that of mode 3. There- 
fore, mode 4, according to Ewald & Heno (1968), is 
excited more than mode 3 by the incident wave. 
Consequently, the absorption of the former is less 
than that of the latter (Fig. 6). The excitation of the 
311 beam, which has two peaks (or two kinks), is 
quite different from the excitation of the 222 beam. 
These two peaks occur when crossing the total reflec- 
tion range of the 313 reflection. The positions of the 
peaks correspond to the projected positions of the 
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Fig. 7. Excitations of the 000 beam for modes 1-4 at /tO = 0 and ot = +10 ixrad. 
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Fig. 8. Excitations of  the 222 beam for modes  1-4 at AO = 0 and a = +10 Ixrad. 
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two branches of the dispersion hyperbola onto the ~p 
axis. For the 222 reflection, the cut at A0 = 0 is only 
on one branch of the 222 dispersion hyperbola. There- 
fore, Ex(222) has only a single peak for each mode. 
Moreover, it is not surprising to see that Ex(311) is 
much less than Ex(222) because the surface diffrac- 
tion is usually weakly excited. 

( c ) Intensity 

The intensity at given A0 and ¢ is calculated 
according to (18) for the relative 222 intensity, 
denoted as I ( 3 1 1 ) / I ( 0 0 0 ) .  The integrated intensity 
over A0 and ¢ is also calculated for each q~ position. 
The integration range is 0.03 ° for A0 and q~, which 
corresponds to the beam divergence used in the 
experiment (see § 4). Fig. 10 shows the calculated 
integrated intensity versus q~ for the Bragg-surface 
case 311 (with c~ = 10 i~rad) and two Bragg-Bragg 
cases, 113 and 511. The latter are calculated according 
to the wide-angle geometry (see, for example, Chang, 
1984). The purpose of calculating these three cases 

is to obtain a relative intensity ratio that can be 
compared with the experimentally measured 
intensities. The total integrated intensities, I over q~, 
of the 311 case are also calculated for various a. They 
are plotted on an arbitrary scale in Fig. 11. Fig. 11 
also indicates that the integrated 311 intensity 
approaches the asymptotic value as a nears 0 °. In 
other words, the intensity calculated for laB = 10 ixrad 
is very close to the surface (asymptotic) values. 

4. Experimental 

Multiple-diffraction experiments were performed on 
a Huber four-circle diffractometer (model 400) with 
Cu K a l  radiation from a rotating-anode X-ray gen- 
erator. The set-up has previously been reported (Tang 
& Chang, 1988). The beam divergences are 0.03 ° in 
A0 and q~. A germanium crystal was first aligned for 
the 222 reflection and then rotated around the [222] 
direction to bring in 311, 113 and 511 reflections at 
different q~ positions. The detector always monitored 
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Fig. 9. Excitat ions o f  the 311 beam for modes  1-4 at AO = O a n d  a = +10 i~rad. 
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Fig. 10. Calcula ted  integrated intensities versus ~p for  the Bragg-surface  311 and Bragg-Bragg 113 and 511 cases for  Cu Kay. 
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the 222 reflected intensity. The ¢ scans with 0.01 ° per 
step in the vicinity of t he  Bragg-surface 311 and the 
Bragg-Bragg 113 and 511 cases were performed and 
the 222 reflected intensities in these positions are 
shown in Fig. 12. 

5. Results and concluding remarks 

The total intensity ratio I(311)'I(113)'I(51T) 
measured from Fig. 12 is 1" 1.8 : 0.17, which is in good 
agreement with the calculated ratio, 1 : 2.4: 0.17. There 

a re  several possible sources of error. (i) The crystal 
may not be ideally perfect so that the calculated 
intensity of the strong reflection 113 is larger than the 
measured value. (ii) The crystal surface may not be 
exactly parallel to the (222) planes. A slight miscut 
on the surface could affect the measured intensity of 
the Bragg-surface diffraction. (iii) There are two 
three-beam cases, 335 and 53i (see Fig. 12), near the 
311 diffraction. Their presence should in principle 
modify the 311 reflected intensity to some extent. 

Aside from the slight disagreement between the 
calculated and measured intensities, the ¢alculated 
procedures presented in this paper can still be used 
to provide sufficient information about the intensity, 
dispersion surface, absorption and mode excitation. 

In conclusion, we have demonstrated that the 
small-angle approximation with the proper boundary 
conditions could be used to deal with dynamical 
Bragg-surface multiple diffractions. Furthermore, the 
number of permitted modes of a three-beam Bragg- 
surface diffraction is four. This can be easily general- 
ized, by following the argument given in (11), to 

Np=2(N-N~+ Ns) (23) 

where Ns is the number of surface reflections. 
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Abstract 

A description is given of 4-connected nets with one 
kind of vertex in which the shortest rings containing 
each pair of edges are N-rings ( N > 4 ) .  Eleven 
uniform nets  (66 ) are identified; seven of these are 
believed to be new. A further thirteen nets with one 
type of vertex and without 3- or 4-rings are described; 
nine of these are also believed to be new 

Introduction 

4-connected nets play an important role in crystal 
chemistry, notably as structures of elements and 
covalently bonded crystals and as the basis of the 
structures of hydrates, framework silicates and related 
materials. Considerable effort has been spent on 
enumerating possible structures and on characterizing 
their topologies; recent contributions that provide 
references to earlier work are those of Bosmans & 
Andries (1990) and Hansen (1990). In this series, 
some nets with all nodes congruent (uninodal) are 
described and analyzed topologically as a prelude to 
the development of a more complete topological 
theory of 4-connected nets than presently exists. With 
some reasonable geometrical restrictions (discussed 
below), the number of possible uninodal 4-connected 
nets is finite and we believe we have identified many 
of them. One mativation for this work is the belief 
that if we can discover how nature puts together 
simple nets, we can design more complicated nets by 
replacing single vertices by clusters of vertices (see, 
for example, Hansen, 1990). 

Wells (1977) attached special significance to the 
uniform nets in which the shortest rings at every angle 
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are equal in length. For uniform 4-connected nets, 
the rings at the six angles common to a vertex are all 
6-rings (have six edges) and are symbolized 66. Wells 
in fact identified only three of these, of which two 
are the familiar diamond and lonsdaleite nets, and 
the third the structure of 3,-silicon. Eleven are 
described here; we believe that seven of them have 
not been described before. 

Most 4-connected nets found in crystal chemistry 
contain 3- or 4-rings. However, in addition to the 
uniform nets mentioned above, the familar nets of 
the quartz and NbO structures are examples of nets 
that contain only larger rings. Here we describe some 
other examples. 

Terminology 

A 4-connected net contains six angles defined by pairs 
of edges. Each angle has four others adjacent that 
share a common edge and one opposite that does not 
have a common edge. Each angle is contained in an 
N-circuit, which is a closed path (without retracing 
steps) of N edges from and returning to the reference 
vertex. A circuit is called a ring if, in addition, for 
every pair of vertices on the circuit, the path on the 
circuit between the vertices is a shortest path (i.e. 
there is no shortcut between them outside the circuit). 
Rings have been variously called 'fundamental 
circuits', 'primitive rings' and 'fundamental rings' by 
other authors. Goetzke & Klien (1991) have recently 
discussed nomenclature and different definitions used 
by different authors; their terminology is used here. 
For every net there is a finite number of rings for 
each vertex and their enumeration is of considerable 
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